INTERNATIONAL A LEVEL

Statistics 3

Exercise 6E

Note: throughout this exercise, your numerical answers may vary slightly from those shown depending on the level of rounding you have used.
$1 \mathrm{H}_{0}$: the diameters of the discs were sampled from a normal distribution with mean 3.8 mm and standard deviation 0.5 mm
H_{1} : the diameters of the discs were sampled from a different distribution.

	$Z=\left(\frac{D-\mu}{\sigma}\right)$	$\mathrm{F}(Z)$	$\mathrm{P}(Z)$	E_{i}	O_{i}	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
$D<3.5$	-0.6	0.2743	0.2743	8.229	6	0.604
$3.5 \leq D<4.0$	0.4	0.6554	0.3811	11.433	12	0.028
$D \geq 4.0$		1.0000	0.3446	10.338	12	0.267
				$\mathbf{3 0}$	X^{2}	$\mathbf{0 . 8 9 9}$

There are 3 cells and 1 restriction therefore, $v=3-1=2$
$\chi_{\text {crit }}^{2}(2)=5.991$
$\chi_{\text {test }}^{2}(2)=0.899$
$\chi_{\text {test }}^{2}(2)=0.899<\chi_{\text {crit }}^{2}(2)=5.991$
Therefore, not significant.
No evidence to reject H_{0}.
$2 \mathrm{H}_{0}$: the observations are from a normal distribution with mean 58 g and standard deviation 4 g . H_{1} : the observations are from a different distribution.

	$Z=\left(\frac{b-\mu}{\sigma}\right)$	Cum Prob	Prob	Exp	Obs	Exp (after combining)	Obs (after combining)
$X<50.5$	-1.86	0.0314	0.0314	4.71	12	39.645	41
$50.5 \leq X<55.5$	-0.63	0.2643	0.2329	34.935	29		67
$55.5 \leq X<60.5$	-0.63	0.7357	0.4714	70.71	67	70.71	67
$60.5 \leq X<65.5$	1.86	0.9686	0.2329	34.935	32	39.645	42
$X \geq 65.5$		1.0000	0.0314	4.71	10		

$$
\begin{aligned}
\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} & =\frac{(41-39.645)^{2}}{39.645}+\frac{(67-70.71)^{2}}{70.71}+\frac{(42-39.645)^{2}}{39.645} \\
& =0.3808
\end{aligned}
$$

There are 3 cells and 1 restriction, therefore, $v=3-1=2$
$\chi_{\text {crit }}^{2}(2)=5.991$
$\chi_{\text {test }}^{2}(2)=0.381$
$\chi_{\text {test }}^{2}(2)=0.381<\chi_{\text {crit }}^{2}(2)=5.991$
Therefore, not significant.
No evidence to reject H_{0}.

INTERNATIONAL A LEVEL

Statistics 3

Solution Bank
Pearson
$3 \mathrm{H}_{0}$: the diameters of the apples are from a normal distribution with mean 8 cm and standard deviation 0.9 cm .
H_{1} : the diameters of the apples are from a different distribution.

	$Z=\left(\frac{b-\mu}{\sigma}\right)$	Cum Prob	Prob	Exp	Obs	Exp (after combining)	Obs (after combining)
$D<6.5$	-1.667	0.0478	0.0478	4.78	8	28.9	37
$6.5 \leq D<7.5$	-0.556	0.2893	0.2415	24.15	29		
$7.5 \leq X<8.5$	0.556	0.7107	0.4214	42.14	38	42.1	38
$8.5 \leq X<9.5$	1.667	0.9522	0.2415	24.15	16	28.9	25
$X \geq 9.5$		1.0000	0.0478	4.78	9		

$\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{(37-28.9)^{2}}{28.9}+\frac{(38-42.1)^{2}}{42.1}+\frac{(25-28.9)^{2}}{28.9}$

$$
=3.20
$$

There are 3 cells and 1 restriction therefore, $v=3-1=2$
$\chi_{\text {crit }}^{2}(2)=5.991$
$\chi_{\text {test }}^{2}(2)=3.20$
$\chi_{\text {test }}^{2}(2)=3.20<\chi_{\text {crit }}^{2}(2)=5.991$
Therefore, not significant.
No evidence to reject H_{0}.

INTERNATIONAL A LEVEL

Statistics 3

4 a H_{0} : the data can be modelled by a normal distribution.
H_{1} : the data cannot be modelled by a normal distribution.

Drinks	$0-9$	$10-19$	$20-29$	$30-39$	$40-50$
Midpoint (x)	4.5	14.5	24.5	34.5	45.0
f	10	24	45	14	7
$f x$	45	348	1102.5	483	315
x^{2}	20.25	210.25	600.25	1190.25	2025
$f x^{2}$	202.5	5046	27011.25	16663.5	14175

$\frac{\sum f x}{\sum f}=\frac{2293.5}{100}$

$$
=22.9
$$

$$
\begin{aligned}
s^{2} & =\frac{1}{\left(\sum f\right)-1}\left(\sum f x^{2}-\frac{\left(\sum f x\right)^{2}}{\sum f}\right) \\
& =\frac{1}{99}\left(63098.25-\frac{2293.5^{2}}{100}\right) \\
& =106.03
\end{aligned}
$$

$s=10.30$

d	b	$Z=\left(\frac{b-\mu}{\sigma}\right)$	Cumulative Probability	Probability	Expected	Observed
$d<10$	9.5	-1.304	0.096	0.096	9.6	10
$10 \leq d<20$	19.5	-0.333	0.369	0.273	27.3	24
$20 \leq d<30$	29.5	0.637	0.738	0.369	36.9	45
$30 \leq d<40$	39.5	1.608	0.946	0.208	20.8	14
$d \geq 40$			1.000	0.054	5.4	7

$$
\begin{aligned}
\chi_{\text {test }}^{2} & =\frac{(10-9.6)^{2}}{9.6}+\frac{(24-27.3)^{2}}{27.3}+\frac{(45-36.9)^{2}}{36.9}+\frac{(14-20.8)^{2}}{20.8}+\frac{(7-5.4)^{2}}{5.4} \\
& =4.89
\end{aligned}
$$

There are 5 cells in the table. μ and σ are estimated, therefore 2 restrictions. Expected frequencies must be 100 , therefore 1 restriction.
$v=5-2-1=2$
$\chi_{\text {crit }}^{2}(2)=9.210$
$\chi_{\text {test }}^{2}(2)=4.89$
$\chi_{\text {test }}^{2}(2)=4.89<\chi_{\text {crit }}^{2}(2)=9.210$
Therefore, not significant.
Accept H_{0}, the data can be modelled by $\mathrm{N}\left(22.9,10.25^{2}\right)$
b The shop keeper could use this to help with stock control.

5 a H_{0} : the data can be modelled by $\mathrm{N}\left(1.32,0.042^{2}\right)$
H_{1} : the data cannot be modelled by $\mathrm{N}\left(1.32,0.042^{2}\right)$

h	Z	Prob	Cum Prob	Exp	Obs	Exp (after combining)	Obs (after combining)
$h<1.225$	-2.26	0.0119	0.0119	1.428	9	7.272	18
$1.225 \leq h<1.255$	-1.55	0.0487	0.0606	5.844	9		
$1.255 \leq h<1.285$	-0.83	0.1427	0.2033	17.124	18	17.124	18
$1.285 \leq h<1.315$	-0.12	0.2489	0.4522	29.868	23	29.868	23
$1.315 \leq h<1.345$	0.60	0.2735	0.7257	32.82	20	32.82	20
$1.345 \leq h<1.375$	1.31	0.1792	0.9049	21.504	19	21.504	19
$1.375 \leq h<1.405$	2.02	0.0734	0.9783	8.808	17	11.412	22
$h>1.405$		0.0217	1.0000	2.604	5		

$$
\begin{aligned}
\chi_{\text {test }}^{2}= & \frac{(18-7.272)^{2}}{7.272}+\frac{(18-17.124)^{2}}{17.124}+\frac{(23-29.868)^{2}}{29.868}+\frac{(20-32.82)^{2}}{32.82}+ \\
& +\frac{(19-21.504)^{2}}{21.504}+\frac{(22-11.412)^{2}}{11.412} \\
= & 32.57
\end{aligned}
$$

There are 6 cells less (8 less 2 combined) and one restriction.

$$
\begin{aligned}
& v=6-1=5 \\
& \chi_{\text {crit }}^{2}(5)=12.832 \\
& \chi_{\text {test }}^{2}(5)=32.57 \\
& \chi_{\text {test }}^{2}(5)=32.57>\chi_{\text {crit }}^{2}(2)=12.832
\end{aligned}
$$

Therefore, significant.
Reject H_{0}, the data cannot be modelled by $\mathrm{N}\left(1.32,0.042^{2}\right)$

5 b

h	Midpoint (x)	f	$f x$	$f x^{2}$
$h<1.225$	1.21	9	10.89	13.18
$1.225 \leq h<1.255$	1.24	9	11.16	13.84
$1.255 \leq h<1.285$	1.27	18	22.86	29.03
$1.285 \leq h<1.315$	1.30	23	29.90	38.87
$1.315 \leq h<1.345$	1.33	20	26.60	35.38
$1.345 \leq h<1.375$	1.36	19	25.84	35.14
$1.375 \leq h<1.405$	1.39	17	23.63	32.85
$h>1.405$	1.42	5	7.1	10.08
			157.98	208.37

$$
\begin{aligned}
\bar{x} & =\frac{\sum f x}{\sum f} \\
& =\frac{157.98}{120} \\
& =1.1365 \\
s^{2} & =\frac{1}{\left(\sum f\right)-1}\left(\sum f x^{2}-\frac{\left(\sum f x\right)^{2}}{\sum f}\right) \\
& =\frac{1}{119}\left(208.37-\frac{1.1365^{2}}{120}\right) \\
& =3.235 \times 10^{-3} \\
s & =0.0569
\end{aligned}
$$

When $\bar{x}=1.1365$ and $s=0.0569$

h	Z	Cum Prob	Prob	Exp	Obs	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
$h<1.225$	-1.609	0.054	0.054	6.48	9	0.980
$1.225 \leq h<1.255$	-1.081	0.140	0.086	10.32	9	0.169
$1.255 \leq h<1.285$	-0.554	0.290	0.150	18.00	18	0.000
$1.285 \leq h<1.315$	-0.026	0.490	0.200	24.00	23	0.042
$1.315 \leq h<1.345$	0.501	0.692	0.202	24.24	20	0.742
$1.345 \leq h<1.375$	1.029	0.848	0.156	18.72	19	0.004
$1.375 \leq h<1.405$	1.556	0.940	0.092	11.04	17	3.218
$h>1.405$		1.000	0.060	7.20	5	0.672
						$X^{2}=5.826$

There are 8 cells in the table. μ and σ are estimated, therefore 2 restrictions. Expected frequencies must be 120 , therefore 1 restriction.

$$
\begin{aligned}
& v=8-2-1=5 \\
& \chi_{\text {crit }}^{2}(5)=12.832 \\
& \chi_{\text {test }}^{2}(5)=5.826 \\
& \chi_{\text {test }}^{2}(5)=5.826<\chi_{\text {crit }}^{2}(5)=12.832
\end{aligned}
$$

Therefore, not significant.
Accept H_{0}, the data can be modelled by $\mathrm{N}\left(1.3165,3.2 \times 10^{-3}\right)$

INTERNATIONAL A LEVEL

5 c On the basis of the two χ^{2} tests, $\mathrm{N}\left(1.3165,3.235 \times 10^{-3}\right)$ is the best model.

Size	Cumulative Probability	Probability	Number to Order
Size 1	0.140	0.140	168
Size 2	0.490	0.350	420
Size 3	0.848	0.358	430
Size 4	1.000	0.152	182

$6 \mathrm{H}_{0}$: the data can be modelled by a uniform distribution.
H_{1} : the data cannot be modelled by a uniform distribution.

Distance	Prob	E_{i}	O_{i}	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
$0-1$	$\frac{1}{12}$	25	37	5.76
$1-2$	$\frac{1}{12}$	25	38	6.76
$2-4$	$\frac{1}{6}$	50	36	0.72
$4-6$	$\frac{1}{6}$	50	47	0.18
$6-9$	$\frac{1}{4}$	75	58	3.85
$9-12$	$\frac{1}{4}$	75	64	1.61
				18.889

There are 6 cells in the table and 1 restriction.
$\nu=6-1=5$
$\chi_{\text {crit }}^{2}(5)=11.070$
$\chi_{\text {test }}^{2}(5)=18.889$
$\chi_{\text {test }}^{2}(5)=18.889>\chi_{\text {crit }}^{2}(5)=11.070$
Therefore, significant.
Reject H_{0}, the data is not from a uniform distribution.

