

Exercise 6E

Note: throughout this exercise, your numerical answers may vary slightly from those shown depending on the level of rounding you have used.

1 H_0 : the diameters of the discs were sampled from a normal distribution with mean 3.8mm and standard deviation 0.5mm

	$Z = \left(\frac{D-\mu}{\sigma}\right)$	F(<i>Z</i>)	P(<i>Z</i>)	E_i	Oi	$\frac{\left(O_i - E_i\right)^2}{E_i}$
D < 3.5	-0.6	0.2743	0.2743	8.229	6	0.604
$3.5 \le D < 4.0$	0.4	0.6554	0.3811	11.433	12	0.028
<i>D</i> ≥ 4.0		1.0000	0.3446	10.338	12	0.267
				30	X^2	0.899

H₁: the diameters of the discs were sampled from a different distribution.

There are 3 cells and 1 restriction therefore, v = 3 - 1 = 2

 $\chi^{2}_{\text{crit}}(2) = 5.991$ $\chi^{2}_{\text{test}}(2) = 0.899$ $\chi^{2}_{\text{test}}(2) = 0.899 < \chi^{2}_{\text{crit}}(2) = 5.991$

Therefore, not significant. No evidence to reject H_0 .

2 H_0 : the observations are from a normal distribution with mean 58 g and standard deviation 4 g. H_1 : the observations are from a different distribution.

	$Z = \left(\frac{b-\mu}{\sigma}\right)$	Cum Prob	Prob	Exp	Obs	Exp (after combining)	Obs (after combining)
X < 50.5	-1.86	0.0314	0.0314	4.71	12	20 645	41
$50.5 \le X < 55.5$	-0.63	0.2643	0.2329	34.935	29	39.043	41
$55.5 \le X \le 60.5$	-0.63	0.7357	0.4714	70.71	67	70.71	67
$60.5 \le X < 65.5$	1.86	0.9686	0.2329	34.935	32	20 (45	42
$X \ge 65.5$		1.0000	0.0314	4.71	10	39.645	

$$\sum \frac{(O_i - E_i)^2}{E_i} = \frac{(41 - 39.645)^2}{39.645} + \frac{(67 - 70.71)^2}{70.71} + \frac{(42 - 39.645)^2}{39.645}$$
$$= 0.3808$$

There are 3 cells and 1 restriction, therefore, v = 3 - 1 = 2 $\chi^2_{\text{crit}}(2) = 5.991$ $\chi^2_{\text{test}}(2) = 0.381$ $\chi^2_{\text{test}}(2) = 0.381 < \chi^2_{\text{crit}}(2) = 5.991$ Therefore, not significant. No evidence to reject H₀.

INTERNATIONAL A LEVEL

Statistics 3 Solution Bank

3 H₀: the diameters of the apples are from a normal distribution with mean 8cm and standard deviation 0.9cm.

H₁: the diameters of the apples are from a different distribution.

	$Z = \left(\frac{b-\mu}{\sigma}\right)$	Cum Prob	Prob	Exp	Obs	Exp (after combining)	Obs (after combining)
<i>D</i> < 6.5	-1.667	0.0478	0.0478	4.78	8	28.0	27
$6.5 \le D < 7.5$	-0.556	0.2893	0.2415	24.15	29	28.9	57
$7.5 \le X < 8.5$	0.556	0.7107	0.4214	42.14	38	42.1	38
$8.5 \le X < 9.5$	1.667	0.9522	0.2415	24.15	16	20.0	25
$X \ge 9.5$		1.0000	0.0478	4.78	9	28.9	25

$$\sum \frac{\left(O_i - E_i\right)^2}{E_i} = \frac{\left(37 - 28.9\right)^2}{28.9} + \frac{\left(38 - 42.1\right)^2}{42.1} + \frac{\left(25 - 28.9\right)^2}{28.9}$$

There are 3 cells and 1 restriction therefore, v = 3 - 1 = 2

$$\chi^2_{\rm crit}\left(2\right) = 5.991$$

$$\chi^2_{\rm test}(2) = 3.20$$

 $\chi^{2}_{\text{test}}(2) = 3.20 < \chi^{2}_{\text{crit}}(2) = 5.991$

Therefore, not significant. No evidence to reject H_0 .

4 a H_0 : the data can be modelled by a normal distribution. H_1 : the data cannot be modelled by a normal distribution

. the data cannot be moderned by a normal distribution.							
Drinks	0–9	10–19	20–29	30–39	40–50		
Midpoint (<i>x</i>)	4.5	14.5	24.5	34.5	45.0		
f	10	24	45	14	7		
fx	45	348	1102.5	483	315		
x^2	20.25	210.25	600.25	1190.25	2025		
fx^2	202.5	5046	27011.25	16663.5	14175		

$$\frac{\sum fx}{\sum f} = \frac{2293.5}{100}$$

= 22.9
$$s^{2} = \frac{1}{\left(\sum f\right) - 1} \left(\sum fx^{2} - \frac{\left(\sum fx\right)^{2}}{\sum f}\right)$$

= $\frac{1}{99} \left(63098.25 - \frac{2293.5^{2}}{100}\right)$
= 106.03

s = 10.30

d	Ь	$Z = \left(\frac{b-\mu}{\sigma}\right)$	Cumulative Probability	Probability	Expected	Observed
<i>d</i> < 10	9.5	-1.304	0.096	0.096	9.6	10
$10 \le d < 20$	19.5	-0.333	0.369	0.273	27.3	24
$20 \le d < 30$	29.5	0.637	0.738	0.369	36.9	45
$30 \le d < 40$	39.5	1.608	0.946	0.208	20.8	14
$d \ge 40$			1.000	0.054	5.4	7

$$\chi^{2}_{\text{test}} = \frac{(10-9.6)^{2}}{9.6} + \frac{(24-27.3)^{2}}{27.3} + \frac{(45-36.9)^{2}}{36.9} + \frac{(14-20.8)^{2}}{20.8} + \frac{(7-5.4)^{2}}{5.4}$$

= 4.89

There are 5 cells in the table. μ and σ are estimated, therefore 2 restrictions. Expected frequencies must be 100, therefore 1 restriction.

v = 5 - 2 - 1 = 2 $\chi^{2}_{crit}(2) = 9.210$ $\chi^{2}_{test}(2) = 4.89$ $\chi^{2}_{test}(2) = 4.89 < \chi^{2}_{crit}(2) = 9.210$

Therefore, not significant. Accept H₀, the data can be modelled by N(22.9, 10.25^2)

b The shop keeper could use this to help with stock control.

5 a H₀: the data can be modelled by N(1.32, 0.042²) H₁: the data cannot be modelled by N(1.32, 0.042²)

h	Z	Prob	Cum Prob	Exp	Obs	Exp (after combining)	Obs (after combining)
<i>h</i> < 1.225	-2.26	0.0119	0.0119	1.428	9	7 272	19
$1.225 \le h \le 1.255$	-1.55	0.0487	0.0606	5.844	9	1.272	18
$1.255 \le h \le 1.285$	-0.83	0.1427	0.2033	17.124	18	17.124	18
$1.285 \le h < 1.315$	-0.12	0.2489	0.4522	29.868	23	29.868	23
$1.315 \le h < 1.345$	0.60	0.2735	0.7257	32.82	20	32.82	20
$1.345 \le h < 1.375$	1.31	0.1792	0.9049	21.504	19	21.504	19
$1.375 \le h < 1.405$	2.02	0.0734	0.9783	8.808	17	11 412	22
h >1.405		0.0217	1.0000	2.604	5	11.412	22

$$\chi^{2}_{\text{test}} = \frac{\left(18 - 7.272\right)^{2}}{7.272} + \frac{\left(18 - 17.124\right)^{2}}{17.124} + \frac{\left(23 - 29.868\right)^{2}}{29.868} + \frac{\left(20 - 32.82\right)^{2}}{32.82} + \frac{\left(19 - 21.504\right)^{2}}{21.504} + \frac{\left(22 - 11.412\right)^{2}}{11.412}$$

= 32.57

There are 6 cells less (8 less 2 combined) and one restriction. v = 6 - 1 = 5

$$\chi^{2}_{\text{crit}}(5) = 12.832$$

$$\chi^{2}_{\text{test}}(5) = 32.57$$

$$\chi^{2}_{\text{test}}(5) = 32.57 > \chi^{2}_{\text{crit}}(2) = 12.832$$

Therefore, significant.

Reject H₀, the data cannot be modelled by $N(1.32, 0.042^2)$

Statistics 3

Solution Bank

5 b

h	Midpoint (<i>x</i>)	f	fx	fx^2
<i>h</i> < 1.225	1.21	9	10.89	13.18
$1.225 \le h \le 1.255$	1.24	9	11.16	13.84
$1.255 \le h \le 1.285$	1.27	18	22.86	29.03
$1.285 \le h < 1.315$	1.30	23	29.90	38.87
$1.315 \le h < 1.345$	1.33	20	26.60	35.38
$1.345 \le h < 1.375$	1.36	19	25.84	35.14
$1.375 \le h < 1.405$	1.39	17	23.63	32.85
h>1.405	1.42	5	7.1	10.08
			157.98	208.37

$$\overline{x} = \frac{\sum fx}{\sum f}$$

$$= \frac{157.98}{120}$$

$$= 1.1365$$

$$s^{2} = \frac{1}{\left(\sum f\right) - 1} \left(\sum fx^{2} - \frac{\left(\sum fx\right)^{2}}{\sum f}\right)$$

$$= \frac{1}{119} \left(208.37 - \frac{1.1365^{2}}{120}\right)$$

$$= 3.235 \times 10^{-3}$$

$$s = 0.0569$$

When $\overline{x} = 1.1365$ and s = 0.0569

h	Z	Cum Prob	Prob	Exp	Obs	$\frac{\left(O_i - E_i\right)^2}{E_i}$
<i>h</i> < 1.225	-1.609	0.054	0.054	6.48	9	0.980
$1.225 \le h < 1.255$	-1.081	0.140	0.086	10.32	9	0.169
$1.255 \le h < 1.285$	-0.554	0.290	0.150	18.00	18	0.000
$1.285 \le h < 1.315$	-0.026	0.490	0.200	24.00	23	0.042
$1.315 \le h < 1.345$	0.501	0.692	0.202	24.24	20	0.742
$1.345 \le h < 1.375$	1.029	0.848	0.156	18.72	19	0.004
$1.375 \le h < 1.405$	1.556	0.940	0.092	11.04	17	3.218
<i>h</i> >1.405		1.000	0.060	7.20	5	0.672
						$X^2 = 5.826$

There are 8 cells in the table. μ and σ are estimated, therefore 2 restrictions. Expected frequencies must be 120, therefore 1 restriction.

v = 8 - 2 - 1 = 5 $\chi^{2}_{crit}(5) = 12.832$ $\chi^{2}_{test}(5) = 5.826$ $\chi^{2}_{test}(5) = 5.826 < \chi^{2}_{crit}(5) = 12.832$ Therefore, not significant.

Accept H₀, the data can be modelled by N(1.3165, 3.2×10^{-3})

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

5 c On the basis of the two χ^2 tests, N(1.3165, 3.235 × 10⁻³) is the best model.

Size	Cumulative Probability	Probability	Number to Order
Size 1	0.140	0.140	168
Size 2	0.490	0.350	420
Size 3	0.848	0.358	430
Size 4	1.000	0.152	182

6 H₀: the data can be modelled by a uniform distribution. H₁: the data cannot be modelled by a uniform distribution.

Distance	Prob	E_i	O _i	$\frac{\left(O_i - E_i\right)^2}{E_i}$
0-1	$\frac{1}{12}$	25	37	5.76
1–2	$\frac{1}{12}$	25	38	6.76
2–4	$\frac{1}{6}$	50	36	0.72
4–6	$\frac{1}{6}$	50	47	0.18
6–9	$\frac{1}{4}$	75	58	3.85
9–12	$\frac{1}{4}$	75	64	1.61
				18.889

There are 6 cells in the table and 1 restriction. v = 6 - 1 = 5 $\chi^{2}_{crit}(5) = 11.070$ $\chi^{2}_{test}(5) = 18.889$ $\chi^{2}_{test}(5) = 18.889 > \chi^{2}_{crit}(5) = 11.070$

Therefore, significant.

Reject H₀, the data is not from a uniform distribution.